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In these notes, we characterize the thermocapillary flow in a liquid layer of nanometric thickness. The thin film
equation is derived in Section I in the lubrication approximation, and the stationary solution is given in the limit
where the thermocapillary stress is balanced by van der Waals forces. In Section II, we show that the fluctuations of
the free interface are controlled by both the Laplace pressure and intermolecular forces, whereas the thermocapillary
contribution is irrelevant. We then derive the spectral density, which is compared in Section III with the more general
expression obtained by solving the Stokes equation, without lubrication approximation.

I. THIN FILM EQUATION

I.1. Derivation of the equation

The evolution equation for the film thickness is derived in the lubrication approximation. The liquid is incompress-
ible with viscosity η. We assume that the film thickness h(r, t) is much smaller than the lateral extension of the liquid
domain. The film is bounded below by a solid surface which coincides with the horizontal plane z = 0, the z-axis
being oriented upward. Throughout these notes, we use uppercase letters to denote 3D vectors whereas lowercases
letters corresponds to their horizontal projection: for instance, the position vector is R = (r, z), with r = (x, y). At
leading order, the Navier-Stokes equation reads

η∂2zv = ∇p , (1)

with ∇ = (∂x, ∂y). The solution for the velocity field is then straightforward: v = az + b + z2/(2η)∇p. The two
constants a and b are set by the no-slip boundary condition v(r, 0) = 0 at the substrate (z = 0), and the stress
continuity condition η∂zv = ∇γ at the free interface (z = h(r, t)).

The temperature rise is assumed to be small so that we neglect the variations of the physical properties of the liquid.
Indeed, a temperature rise of a few kelvins above the room temperature T0 ≈ 300 K leads to variations that are of
the order of 1% of the equilibrium values. We only account for the temperature dependance of the surface tension in
the thermocapillary stress at the interface, since the latter actually induces the flow in the liquid layer. The surface
tension γ is usually a decreasing fonction of the temperature. For small variations with respect to the unperturbed
temperature T0, one can assume a linear relation γ(T ) = γ0−γθ(T −T0), with γ0 = γ(T0) and γθ = |∂γ/∂T |. Defining
θ(r) = T (r)− T0, one thus obtains

v(r, z) =
1

2η

(
z2 − 2zh

)
∇p− γθ

η
z∇θ . (2)

Next, we enforce the incompressibility condition in order to relate the time evolution of the film thickness to the
velocity field, namely

∂th = −∇ ·
(∫ h

0

v(r, z)dz

)
= ∇ ·

(
h3

3η
∇p+

h2

2η
γθ∇θ

)
. (3)

The pressure is finally expressed thanks to the balance of normal stresses at the interface. For films with a thickness
of a few tens of nanometers, the contribution from gravity can be neglected and the stress balance condition reads

p0 − p = −γ0∇ · n + Π(h) , (4)

with n the local unit vector normal to the interface. The disjoining pressure is related to intermolecular forces,
Π(h) = −Φ′(h), with Φ(h) = −A/(12πh2) the non-retarded van der Waals interaction potential (per unit area). Note
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that the Hamaker constant A is negative for repulsive van der Waals forces. In the small gradient approximation, the
curvature moreover simplifies to ∇ · n ' −∇2h. The thin film equation finally reads

∂th = ∇ ·
(
h3

3η
∇
[
φ′(h)− γ0∇2h

]
+
h2

2η
γθ∇θ

)
. (5)

I.2. Stationary solution

If the heating is axisymmetric, the temperature depends only on the radial distance r =
√
x2 + y2. The stationary

film profile is then solution of the equation

∂r

(
rh3∂r

[
A

6πh3
− γ0∇2h

]
+

3

2
γθrh

2∂rθ

)
= 0 . (6)

This equation states that the thinning of the film, due to the thermocapillary flow, is balanced by both the Laplace

pressure and intermolecular forces. When the thickness of the film becomes smaller than hc =
(
|A|L2/(6πγ0)

)1/4
,

with L the lateral scale on which thinning occurs, curvature effects can actually be neglected. As explained in the
main body of the paper, L is in the millimeter range. Taking |A| ≈ 10−19 J, L ≈ 10−3 m and γ0 ≈ 10−2 N·m−1, one
gets hc ≈ 1 µm. For h < hc, the term γ0∇2h can be disregarded and Eq. (6) can be integrated to give

A

2π

h′

h3
=

3

2
γθθ
′ , (7)

where we have enforced the boundary conditions for the deformation profile, h(r → ∞) = h∞ and ∂rh|∞ = 0, and
for the temperature, θ(r →∞) = 0 and ∂rθ|∞ = 0.

Integrating once more between 0 and r, one arrives at

1

h20
− 1

h(r)2
= −6πγθ

A
[θ(0)− θ(r)] , (8)

FIG. 1. Evolution of the stationary thickness as a function of the voltage amplitude V0 (in volts) delivered by the two quadrants
of the photodiode, which is proportional to the light intensity on the quadrants and hence to the temperature increase. The
results are consistent with the theoretical prediction Eq. (9) assuming that the maximum temperature rise is proportional to the

laser intensity (the full line corresponds to V
−1/2
0 ). The dispersion of the data is presumably due to the presence of adsorbed

contaminants at the interface.
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with h0 = h(0). The thickness at the center is finally obtained by taking the limit r → ∞, together with the
assumption h0 � h∞ = h(r →∞), so that1

h0 =

√
|A|

6πγθθ(0)
. (9)

For |A| ≈ 10−19 J, γθ ≈ 10−4 N·m−1·K−1 and θ(0) ≈ 1 K, we predict a stationary thickness h0 ≈ 10 nm, which is
indeed much smaller than the initial thickness h∞ ≈ 1 µm.

II. STOCHASTIC THIN FILM EQUATION AND FLUCTUATION SPECTRUM

II.1 Linearization of the thin film equation

For small deviations with respect to the stationary height h0, one can set h = h0 + δh with |δh| � h0. Eq. (5) can
then be linearized and one gets at lowest order

∂tδh =
h0
3η

∇ ·
[
h20Φ′′0∇δh− h20γ0∇

(
∇2δh

)
+ 3γθδh∇θ

]
, (10)

with Φ′′0 = Φ′′(h0). The issue is then to evaluate which contributions are relevant regarding the fluctuation spectrum.
To estimate the relative weight of each contribution in the square brackets, we first note that θ and δh vary on
different length scales. Indeed, the temperature gradient is set by the experimental set-up, |∇θ| ≈ θ(0)/L, whereas
the deformation gradient involves an intrinsic length scale λ such that |∇δh| ≈ δh/λ. Equating the contribution from
Laplace pressure and van der Waals forces, one gets

λ =

(
2πh40γ0
|A|

)1/2

. (11)

Taking the same numerical values as above, we find that λ is in the micrometer range. We then have

|γθδh∇θ|
|h20Φ′′0∇δh|

≈ λ

L
≈ 10−3 , (12)

so that the thermocapillary contribution can be neglected when focusing on the fluctuations of the film thickness.

II.2. Stochastic thin film equation

According to the prior discussion, we now rewrite the thin film Eq. (10) where the thermocapillary contribution is
neglected. Although the stationary height is set by the nonequilibrium Marangoni flow, the thin film fluctuations follow
an equilibrium distribution. We then adapt the original analysis of Mecke and Rauscher [On thermal fluctuations in
thin film flow, J. Phys.: Condens. Matter 17, S3515 (2005)] and include a random noise term in order to account for
fluctuations. The stochastic version of the thin film equation then reads

∂tδh =
h30
3η

[
φ′′(h0)∇2δh− γ0∇4δh

]
+ ∇ · f , (13)

where the correlations of the Gaussian white noise f are given by

〈fi(r, t)〉 = 0 , and 〈fi(r, t)fj(r′, t′)〉 =

(
2kBT0h

3
0

3η

)
δijδ(t− t′)δ(r− r′) . (14)

1 As a matter of fact, the limit r → ∞ has to be considered with caution since capillary effects are not negligible in the unperturbed
region. Still, the thickness at the center Eq. (9) remains correctly given by the balance between thermocapillary stresses and van der
Waals forces.
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Switching to time-Fourier representation

δh̃q,ω =

∫ ∞
−∞

dt

2π

∫
d2r e−i(q·r−ωt)δh(r, t) , (15)

the solution of Eq. (13) is then straigthforward

δh̃q,ω =
iq · f̃(q, ω)

ωq − iω
, (16)

where we define ωq = Γ(q, h0)εq, with Γ(q, h0) = q2h30/(3η) and εq = γ0q
2 − A/(2πh40). Regarding the experiments,

one is interested in the spectral density P (q, ω) which is defined as the Fourier transform of the height correlation
function 〈

δh̃q,ωδh̃q′,ω′

〉
= P (q, ω)δ2(q + q′)δ(ω + ω′) . (17)

Here, we introduce the shorthand notation δ2(q + q′) = 2π2δ(q + q′). One finally obtains the spectral density

P (q, ω) =

〈∣∣∣δh̃q,ω∣∣∣2〉 =
kBT0
π

Γ(q, h0)

ω2 + ω2
q

. (18)

III. THIN FILM VS. STOKES RELAXATION

So far, we have assumed that the lubrication approximation is appropriate. We still have to check whether the
thin film regime is suitable to describe the normal fluctuations of the interface. To this aim, we solve the full Stokes
problem without the lubrication approximation and derive the fluctuation spectrum of the interface. We then discuss
the results in the regime that is experimentally relevant.

III.1. Dispersion relation

Assuming Re� 1, the velocity and pressure fields are solution of the incompressible Stokes equations

η∇2v −∇p = 0 , ∇ · v = 0 , (19)

together with the no-slip condition v(r, 0) = 0 at the substrate (z = 0). At the free interface (z = h(r)), we have to
enforce the stress balance condition

(σ − σ0) · n̂ = [−γ (∇ · n̂) + Π(h)] n̂ , (20)

where the components of the stress tensor σ in the liquid phase are σij = −pδij + η (∂ivj + ∂jvi). The stress tensor
in the gas phase is simply σ0 = −p0I, with I the identity tensor and p0 the pressure. Finally, the time-evolution
equation for the interface is obtained from the kinematic condition

∂th = vz(r, h, t) . (21)

The deformation of the interface is then written as h = h0 + δh, with |δh| � h0. For the analysis that follows, it is
convenient to define the Fourier representation

δ̃hq(z, t) =

∫
d2r e−iq·rδh(r, z, t) , (22)

with r = (x, y) and q = (qx, qy). As shown in the Appendix, the time-evolution equation for the interface can then
be written as

∂tδh̃q = −γqδh̃q . (23)

Here, the damping rate γq is expressed quite generally as γq = ΓSt(q, h0)εq, with εq = γ0q
2−A/(2πh40). The dissipation

kernel is ΓSt(q, h0) = Γ0(q)F (qh0), with Γ0(q) = 1/(2ηq) the Oseen kernel (pertaining to a semi-infinite liquid layer).
Hydrodynamic interactions with the wall can be factorized into a single function F defined as

F (u) =
1− 4ue−2u − e−4u

1 + 2(1 + 2u2)e−2u + e−4u
. (24)

It behaves asymptotically as F (u) ∼ 2u3/3 when u→ 0, and F (u)→ 1 when u→∞.



5

III.2. Fluctuation spectrum

We account for the fluctuations by adding a random term to the relaxation Eq. (23), that now reads

∂tδh̃q = −γqδh̃q +Nq . (25)

The white noise Nq follows a Gaussian statistics, with zero mean value 〈Nq(t)〉 = 0 and correlations given by the
fluctuation-dissipation theorem

〈Nq(t)Nq′(t′)〉 = 2kBT0ΓSt(q, h0)δ2(q + q′) . (26)

We then switch to the time-Fourier representation so that the solution of the Langevin Eq. (25) is straightforward

δh̃q,ω =
Nq,ω

γq − iω
, with 〈Nq,ωNq′,ω′(t′)〉 =

kBT

π
ΓSt(q, h0)δ2(q + q′)δ(ω + ω′) . (27)

The final result is then

PSt(q, ω) =
kBT

π

ΓSt(q, h0)

ω2 + γ2q
. (28)

Note that Eq. (28) shares many similarities with the thin-film result Eq. (18). They only differ in the expression of
the dissipation kernel Γ.

III.3. Comparison between the lubrication approximation and the full Stokes solution

To start the discussion, let us compare the relaxation rates of the two models. When solving the full Stokes problem,
we find that the relaxation rate is given by

γq = γ(0)q F (qh0) , with γ(0)q =
1

2τc

(
1 + (λq)2

λq

)
. (29)

This relation can be interpreted as follows. Here, γ
(0)
q is the relaxation rate in the thick film limit (h0 → ∞), with

τc = λη/γ0 the capillary time. For finite h0, the relaxation rate is modified since viscous dissipation increases (no slip

condition at the bounding wall). The asymptotic limits of Eq. (29) are γq ∼ γ(0)q when qh0 →∞, and

γq =
1

τ0
(λq)2

[
1 + (λq)2

]
, (30)

when qh0 → 0, where we define τ0 = 3ηλ4/(γ0h
3
0).

On the other hand, in the thin film limit, one actually gets the same expression Eq. (30) for the relaxation rate ωq.
This is actually no big surprise since the long wave-length approximation qh0 � 1 is actually underlying the thin film
approximation. To see which regime is experimentally relevant, we can evaluate the relevant length and time scales.
We take the numerical values h0 ≈ 10 nm, |A| = 10−19 J, γ0 = 10−2 N·m−1, and η = 10−2 Pa·s.

� Length scales: the PSD measured in the experiment involves an integral of P (q, ω) with a weight function that
is maximum for wavevectors q ∼ 1/R, with R ≈ 10−6 m the beam size. With h0 ≈ 10−8 m that is 2 orders of
magnitude smaller than R, the lubrication approximation is fully justified: qh0 ∼ h0/R� 1.

� Time scales: τc = ηλ/γ0 ' 10−7 s, which is several orders of magnitude smaller than τ0 ' 10−4 s.

As a consequence, the thin regime limit is therefore a very good approximation in the low frequency limit. The full
solution of the Stokes equation becomes relevant when the surface tension is sufficiently small (e.g., close to a critical
point), or when the thickness of the film increases (one then recovers the results for the semi-infinite layer).

Regarding the correlation function, the complete solution Eq. (28) is always valid, whatever the values of the
parameters. It can be used to fit the data from the thick layer regime down to the very thin layer regime. Still, since
the system is highly confined, the thin film expression (18) is a very good approximation.
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APPENDIX

In this appendix, we derive the solution of the Stokes problem. We define the cylindrical basis (q̂, t̂, n̂) in Fourier
space

q̂ =
qx
q
ex +

qy
q
ey , t̂ = −qy

q
ex +

qx
q
ey , and n̂ = ez . (31)

In this system of coordinates, the velocity is decomposed in longitudinal, transverse and normal components: ṽ =
ṽ‖ + ṽzn̂ = ṽlq̂ + ṽtt̂ + ṽzn̂. The Stokes Eq. (19) then reads

∂2z ṽl − q2ṽl =
iq

η
p̃ , (32a)

∂2z ṽt − q2ṽt = 0 , (32b)

∂2z ṽz − q2ṽz =
1

η
∂z p̃ , (32c)

iqṽl + ∂z ṽz = 0 . (32d)

The pressure can be related to the normal component of the velocity through: p̃ = η
(
q−2∂3z ṽz − ∂z ṽz

)
. From

Eqs. (32a), (32c) and (32d), we can deduce a single equation for the normal component

∂4z ṽz − 2q2∂2z ṽz + q4ṽz = 0 . (33)

Regarding the boundary conditions, we assume the no-slip condition v(r, 0) = 0 at the substrate, so that in Fourier
representation

ṽz(q, 0) = 0 , (34a)

ṽt(q, 0) = 0 , (34b)

∂z ṽz(q, 0) = 0 . (34c)

The latter follows from the incompressibility condition Eq. (32d). At the free interface, we have to enforce the stress
balance condition Eq. (20) at z = h(r, t) = h0 + δh(r, t), where we assume |δh| � h0. We then develop the disjoining
pressure at linear order: Π(h) = Π(h0) + Π′(h0)δh+O(δh2). The boundary condition Eq. (20) is then projected on
the perpendicular and parallel directions.

� ei · (σ − σ0) · ez = 0 (with i = x, y), so that in Fourier representation

η
(
∂zṽ‖ + iqṽz

) ∣∣∣
z=h0

= 0 .

We then obtain in the transverse direction

∂z ṽt
∣∣
z=h0

= 0 . (35)

In the longitudinal direction, the BC leads to (∂z ṽl + iqṽz)
∣∣
z=h0

= 0, which can be rewritten thanks to the

continuity Eq. (32d) as (
∂2z ṽz + q2ṽz

) ∣∣
z=h0

= 0 . (36)

� ez · σ · ez = [Π(h0) + Π′(h0)δh] + γ∇2δh. Without loss of generality one can set p0 = Π(h0), so that we get

(2η∂z ṽz − p̃)
∣∣
z=h0

= −εqδh̃q ,

with εq = γ0q
2 −Π′(h0). Substituting the pressure in the latter equation, we finally get

(
∂3z ṽz − 3q2∂z ṽz

) ∣∣
z=h0

=
q2εq
η
δh̃q . (37)
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We first focus on the transverse component: it satisfies Eq. (32b), whose solution is a linear combination of sinh(qz)
and cosh(qz). Enforcing the BCs (34b) and (35) then leads to the trivial solution

ṽt(q, z) = 0 . (38)

The normal component of the velocity is solution of Eq. (33), whose solution is straightforward

ṽz(q, z) = Ae−qz +Bqze−qz + Ceqz +Dqzeqz . (39)

The integration constants are obtained by enforcing the BCs (34a), (34c), (36) and (37), i.e. in matrix notation
1 0 1 0
−1 1 1 1
e−u (−1 + u)e−u eu (1 + u)eu

e−u ue−u −eu −ueu



A
B
C
D

 =


0
0
0

Γ0εqδh̃q

 ,

with u = qh0 and Γ0 = 1/(2ηq). This system is readily inverted and we get

A =

[
1 + u+ (1− u)e−2u

1 + 2(1 + 2u2)e−2u + e−4u

]
e−uΓ0εqδh̃q , (40a)

B =

[
1 + 2u+ e−2u

1 + 2(1 + 2u2)e−2u + e−4u

]
e−uΓ0εqδh̃q , (40b)

C = −
[

1 + u+ (1− u)e−2u

1 + 2(1 + 2u2)e−2u + e−4u

]
e−uΓ0εqδh̃q , (40c)

D =

[
1 + (1− 2u)e−2u

1 + 2(1 + 2u2)e−2u + e−4u

]
e−uΓ0εqδh̃q . (40d)

The solution of the Stokes problem is then given by Eq. (39) with the integration constants obtained in Eq. (40).


